Time series modeling and large scale global solar radiation forecasting from geostationary satellites data
نویسندگان
چکیده
When a territory is poorly instrumented, geostationary satellites data can be useful to predict global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory, the Corsica Island, but as data used are available for the entire surface of the globe, our method can be easily exploited to another place. Indeed 2-D hourly time series are extracted from the HelioClim-3 surface solar irradiation database treated by the Heliosat-2 model. Each point of the map have been used as training data and inputs of artificial neural networks (ANN) and as inputs for two persistence models (scaled or not). Comparisons between these models and clear sky estimations were proceeded to evaluate the performances. We found a normalized root mean square error (nRMSE) close to 16.5% for the two best predictors (scaled persistence and ANN) equivalent to 35-45% related to ground measurements. Finally in order to validate our 2-D predictions maps, we introduce a new error metric called the gamma index which is a criterion for comparing data from two matrixes in medical physics. As first results, we found that in winter and spring, scaled persistence gives the best results (gamma index test passing rate is respectively 67.7% and 86%), in autumn simple persistence is the best predictor (95.3%) and ANN is the best in summer (99.8%).
منابع مشابه
Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملCloud pattern prediction from geostationary meteorological satellite images for solar energy forecasting
Surface solar radiation forecasting permits to predict photovoltaic plant production for a massive and safe integration of solar energy into the electric network. For short-term forecasts (intra-day), methods using images from meteorological geostationary satellites are more suitable than numerical weather prediction models. Forecast schemes consist in assessing cloud motion vectors and in extr...
متن کاملMapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
Thermal infrared (TIR) remote sensing of landsurface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstra...
متن کاملA Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network
This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1401.4644 شماره
صفحات -
تاریخ انتشار 2014